Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Open Forum Infect Dis ; 10(4): ofad154, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2292925

ABSTRACT

The factors contributing to the rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) BA.4 and BA.5 subvariants in populations that experienced recent surges of BA.2 and BA.2.12.1 infections are not understood. Neutralizing antibodies (NAbs) are likely to protect against severe disease if present in sufficient quantity. We found that after BA.2 or BA.2.12.1 infection, NAb responses were largely cross-neutralizing but were much less effective against BA.5. In addition, individuals who were infected and treated early with nirmatrelvir/ritonavir (Paxlovid) had lower NAb levels than untreated individuals.

2.
J Med Chem ; 66(8): 5802-5819, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2292924

ABSTRACT

Early antiviral treatments, including intravenous remdesivir (RDV), reduce hospitalization and severe disease caused by COVID-19. An orally bioavailable RDV analog may facilitate earlier treatment of non-hospitalized COVID-19 patients. Here we describe the synthesis and evaluation of alkyl glyceryl ether phosphodiesters of GS-441524 (RVn), lysophospholipid analogs which allow for oral bioavailability and stability in plasma. Oral treatment of SARS-CoV-2-infected BALB/c mice with 1-O-octadecyl-2-O-benzyl-sn-glyceryl-3-phospho-RVn (60 mg/kg orally, once daily for 5 days starting 12h after infection) reduced lung viral load by 1.5 log10 units versus vehicle at day 2 and to below the limit of detection at day 5. Structure/activity evaluation of additional analogs that have hydrophobic ethers at the sn-2 of glycerol revealed improved in vitro antiviral activity by introduction of a 3-fluoro-4-methoxy-substituted benzyl or a 3- or 4-cyano-substituted benzyl. Collectively, our data support the development of RVn phospholipid prodrugs as oral antiviral agents for prevention and treatment of SARS-CoV-2 infections.


Subject(s)
Antiviral Agents , COVID-19 , Animals , Mice , SARS-CoV-2 , Phospholipids
3.
Nat Commun ; 14(1): 948, 2023 02 20.
Article in English | MEDLINE | ID: covidwho-2282182

ABSTRACT

Small molecule inhibitors of glycosylation enzymes are valuable tools for dissecting glycan functions and potential drug candidates. Screening for inhibitors of glycosyltransferases are mainly performed by in vitro enzyme assays with difficulties moving candidates to cells and animals. Here, we circumvent this by employing a cell-based screening assay using glycoengineered cells expressing tailored reporter glycoproteins. We focused on GalNAc-type O-glycosylation and selected the GalNAc-T11 isoenzyme that selectively glycosylates endocytic low-density lipoprotein receptor (LDLR)-related proteins as targets. Our screen of a limited small molecule compound library did not identify selective inhibitors of GalNAc-T11, however, we identify two compounds that broadly inhibited Golgi-localized glycosylation processes. These compounds mediate the reversible fragmentation of the Golgi system without affecting secretion. We demonstrate how these inhibitors can be used to manipulate glycosylation in cells to induce expression of truncated O-glycans and augment binding of cancer-specific Tn-glycoprotein antibodies and to inhibit expression of heparan sulfate and binding and infection of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Glycosylation , SARS-CoV-2/metabolism , Glycoproteins/metabolism , Polysaccharides/metabolism
4.
Clin Infect Dis ; 2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-2228580

ABSTRACT

We isolated a SARS-CoV-2 BA.2 variant from a person with COVID-19 recrudescence after nirmatrelvir/ritonavir treatment. Antiviral sensitivity and neutralizing antibody testing were performed with both parental SARS-CoV-2 and multiple variants of concern. We found that neither NM resistance nor absence of neutralizing immunity were likely causes of the recrudescence.

5.
Antimicrob Agents Chemother ; 65(10): e0115521, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1416580

ABSTRACT

Remdesivir (RDV; GS-5734) is currently the only FDA-approved antiviral drug for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The drug is approved for use in adults or children 12 years or older who are hospitalized for the treatment of COVID-19 on the basis of an acceleration of clinical recovery for inpatients with this disease. Unfortunately, the drug must be administered intravenously, restricting its use to those requiring hospitalization for relatively advanced disease. RDV is also unstable in plasma and has a complex activation pathway which may contribute to its highly variable antiviral efficacy in SARS-CoV-2-infected cells. Potent orally bioavailable antiviral drugs for early treatment of SARS-CoV-2 infection are urgently needed, and several, including molnupiravir and PF-07321332, are currently in clinical development. We focused on making simple, orally bioavailable lipid analogs of remdesivir nucleoside (RVn; GS-441524) that are processed to RVn monophosphate, the precursor of the active RVn triphosphate, by a single-step intracellular cleavage. In addition to high oral bioavailability, stability in plasma, and simpler metabolic activation, new oral lipid prodrugs of RVn had submicromolar anti-SARS-CoV-2 activity in a variety of cell types, including Vero E6, Calu-3, Caco-2, human pluripotent stem cell (PSC)-derived lung cells, and Huh7.5 cells. In Syrian hamsters, oral treatment with 1-O-octadecyl-2-O-benzyl-glycero-3-phosphate RVn (ODBG-P-RVn) was well tolerated and achieved therapeutic levels in plasma above the 90% effective concentration (EC90) for SARS-CoV-2. The results suggest further evaluation as an early oral treatment for SARS-CoV-2 infection to minimize severe disease and reduce hospitalizations.


Subject(s)
COVID-19 Drug Treatment , Prodrugs , Adenosine/analogs & derivatives , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Caco-2 Cells , Cricetinae , Humans , Lipids , SARS-CoV-2
6.
Sci Adv ; 7(34)2021 08.
Article in English | MEDLINE | ID: covidwho-1365115

ABSTRACT

Novel coronavirus disease 2019 (COVID-19) severity is highly variable, with pediatric patients typically experiencing less severe infection than adults and especially the elderly. The basis for this difference is unclear. We find that mRNA and protein expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, increases with advancing age in distal lung epithelial cells. However, in humans, ACE2 expression exhibits high levels of intra- and interindividual heterogeneity. Further, cells infected with SARS-CoV-2 experience endoplasmic reticulum stress, triggering an unfolded protein response and caspase-mediated apoptosis, a natural host defense system that halts virion production. Apoptosis of infected cells can be selectively induced by treatment with apoptosis-modulating BH3 mimetic drugs. Notably, epithelial cells within young lungs and airways are more primed to undergo apoptosis than those in adults, which may naturally hinder virion production and support milder COVID-19 severity.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Apoptosis/genetics , COVID-19/genetics , Gene Expression Profiling/methods , Age Factors , Aged , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Female , Humans , Infant , Lung/cytology , Lung/metabolism , Lung/virology , Male , Mice, Inbred C57BL , Middle Aged , SARS-CoV-2/physiology , Severity of Illness Index , Vero Cells , Virus Internalization
7.
Cell ; 183(4): 1043-1057.e15, 2020 11 12.
Article in English | MEDLINE | ID: covidwho-756808

ABSTRACT

We show that SARS-CoV-2 spike protein interacts with both cellular heparan sulfate and angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Docking studies suggest a heparin/heparan sulfate-binding site adjacent to the ACE2-binding site. Both ACE2 and heparin can bind independently to spike protein in vitro, and a ternary complex can be generated using heparin as a scaffold. Electron micrographs of spike protein suggests that heparin enhances the open conformation of the RBD that binds ACE2. On cells, spike protein binding depends on both heparan sulfate and ACE2. Unfractionated heparin, non-anticoagulant heparin, heparin lyases, and lung heparan sulfate potently block spike protein binding and/or infection by pseudotyped virus and authentic SARS-CoV-2 virus. We suggest a model in which viral attachment and infection involves heparan sulfate-dependent enhancement of binding to ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin presents new therapeutic opportunities.


Subject(s)
Betacoronavirus/physiology , Heparitin Sulfate/metabolism , Peptidyl-Dipeptidase A/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Betacoronavirus/isolation & purification , Binding Sites , COVID-19 , Cell Line , Coronavirus Infections/pathology , Coronavirus Infections/virology , Heparin/chemistry , Heparin/metabolism , Heparitin Sulfate/chemistry , Humans , Kidney/metabolism , Lung/metabolism , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Binding , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL